matrices

What is matrix?

matrix are list / array of number / functions that are represented with enclosed brackets

what is linear transformations

Operations on Matrices

Addition / subtraction

Multiplication (scalar)

Multiplication

More information about matrices

Order of matrices

[1232n..n..3n..n..]\begin{bmatrix} 1 & 2 & 3 \\ 2 & n.. & n.. \\ 3 & n.. & n.. \end{bmatrix}

order of matrix is given by m×nm \times n. where mm is number of rows and nn is number of columns. for above matrix it is 3×3=93 \times 3 = 9 as m,n=3m,n=3.

Two matrices are considered equal if both have same order and there components are same

[1234]=[1234]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}

Types of matrices

Column

[123456]\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{bmatrix}

Row

[123456]\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}

square

[1234562n..n..n..n..n..3n..n..n..n..n..4n..n..n..n..n..5n..n..n..n..n..6n..n..n..n..n..]\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & n.. & n.. & n.. & n.. & n.. \\ 3 & n.. & n.. & n.. & n.. & n.. \\ 4 & n.. & n.. & n.. & n.. & n.. \\ 5 & n.. & n.. & n.. & n.. & n.. \\ 6 & n.. & n.. & n.. & n.. & n.. \\ \end{bmatrix}

Diagonal

[100000020000003000000400000050000006]\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ \end{bmatrix}

In this type of Matrix everything accept diagonal values are zero

Scalar Matrix

[500000050000005000000500000050000005]\begin{bmatrix} 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ \end{bmatrix}

Diagonal Matrix with every diagonal value being same

Identify Matrix

[1001],[100010001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \Huge , \small \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Scalar Matrix with every diagonal value being 1 Identify Matrix has use in Transformations it’s basics building block in many mathematical systems

Zero

[000000000]\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}

Additional resources